Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluation of Emission Control Technology Approaches for Heavy-Duty Gasoline Engines

1978-02-01
780646
This paper summarizes a laboratory effort toward reducing nine-mode cycle composite emissions and fuel consumption in a heavy-duty gasoline engine, while retaining current durability performance. Evaluations involved standard carburetors, a Dresserator inductor, a Bendix electronic fuel injection system, exhaust manifold thermal reactors, and exhaust gas recirculation, along with other components and engine operating parameters. A system consisting of electronic fuel injection, thermal reactors with air injection and exhaust gas recirculation, was assembled which met specified project goals. An oxidation catalyst was included as an add-on during the service accumulation demonstration. In addition, the driveability of this engine configuration was demonstrated.
Technical Paper

Automotive Hydrocarbon Emission Patterns in the Measurement of Nonmethane Hydrocarbon Emission Rates

1977-02-01
770144
The advent of emission control technology has resulted in significant changes in both the total mass and detailed patterns of hydrocarbons emitted from automobiles. Emission rates of 56 hydrocarbons from 22 motor vehicles, including catalyst and noncatalyst configurations, were determined for the Federal Urban Driving Cycle. An increased relative abundance of methane is indicated for vehicles equipped with oxidation catalysts. In view of the photochemically non-reactive nature of methane, simple and economic procedures for determination of vehicle nonmethane hydrocarbon emission rates are evaluated. In general the procedures evaluated require independent total hydrocarbon and methane analysis, with the nonmethane hydrocarbon level calculated by difference. The procedures are evaluated by comparison of indicated nonmethane hydrocarbon emission rates with rates obtained by summation of individual compound rates determined by advanced gas chromatographic procedures.
Technical Paper

Emission Patterns of Diesel-Powered Passenger Cars - Part II

1977-02-01
770168
An experimental program was conducted to characterize the gaseous and particulate emissions from a 1975 Peugeot 504D light duty diesel-powered vehicle. The vehicle was tested over the 1975 Federal Test Procedure, Highway Fuel Economy Test, and Sulfate Emissions Test driving cycles using four different fuels covering a fair range of composition, density, and sulfur content. In addition to fuel economy and regulated gaseous emission measurements of hydrocarbons, carbon monoxide, and oxides of nitrogen, emission measurements were also obtained for non-regulated pollutants including sulfur dioxide, sulfates, aldehydes, benzo[a]pyrene, carbonyl sulfide, hydrogen cyanide, nonreactive hydrocarbons, and particulate matter. The results are discussed in terms of emission trends due to either fuel type or driving cycle influence.
Technical Paper

The Environmental Implications of Manganese as an Alternate Antiknock

1975-02-01
750926
Methylcyclopentadienylmanganese tricarbonyl (MMT) while originally marketed in the late 50's and early 60's as a secondary antiknock to leaded fuels, is presently being marketed as a primary antiknock targeted for the EPA required lead-free gasoline grade tailored for use in catalyst-equipped vehicles. This paper reviews and discusses new information related to the effect of manganese gasoline additives on the performance of catalysts, regulated emissions, and several currently unregulated emissions. In addition, estimates of human exposures to automotive-generated manganese particulate and the toxicological characteristics of manganese are discussed as they related to an assessment of the potential public health consequences should manganese additives come into widespread use. EPA's position regarding the use of manganese additives is presented and discussed.
Technical Paper

Exhaust Emissions from Heavy-Duty Trucks Tested on a Road Course and by Dynamometer

1975-02-01
750901
This is a summary compilation and analysis of exhaust-emission results and operating parameters from forty-five heavy-duty gasoline and diesel-powered vehicles tested over a 7.24-mile road course known as the San Antonio Road Route (SARR); and, for correlative purposes, on a chassis dynamometer.(2) Exhaust samples were collected and analyzed using the Constant Volume Sampler (CVS) technique similar to that used in emission testing of light-duty vehicles. On the road course, all equipment and instrumentation were located on the vehicle while electrical power was supplied by a trailer-mounted generator. In addition to exhaust emissions, operating parameters such as vehicle speed, engine speed, manifold vacuum, and transmission gear were simultaneously measured and recorded on magnetic tape. The forty-five vehicles tested represent various model years, GVW ratings, and engine types and sizes.
X